On this page |
The Wire Object DOP creates a Wire Object inside the DOP simulation. It creates a new object and attaches the subdata required for it to be a properly conforming Wire Object.
The SOP geometry used to define wire objects are expected to contain a set of curves. These curves may be closed curves (eg. polygons) and will be connected if multiple curves share a common point. This lets wire objects describe structures such as ropes, trees, bridges, and spider webs.
Using Wire Object
-
Select the objects to convert to wire objects and press Enter to confirm your selection.
-
Click the Wire Object tool from the Wires tab.
Attributes
You can create attributes on the wire object’s RestGeometry to influence its behavior. Most of these attributes allow fine-tuning of the wire by scaling values set in this node. Point, primitive, or detail attributes of the same name will be used if the vertex attributes are not present.
Name | Class | Type | Description | Scaling Factor |
---|---|---|---|---|
width
|
Edge (vertex) | Float | Width of each edge. | Yes |
density
|
Point | Float | Density of each point. | Yes |
orient
|
Point | Float4 |
Initial orientation of each point. This value is stored as a quaternion. |
No |
v
|
Point | Vector | Initial velocity of each point. | No |
w
|
Point | Vector |
Initial angular velocity of each point measured in radians per second. |
No |
friction
|
Point | Float | Friction of each point. | Yes |
dynamicfriction
|
Point | Float | Defines how much to scale the friction value when there is motion at the point of contact. | Yes |
klinear
|
Edge (vertex) | Float | Defines how strongly the wire resists stretching. | Yes |
damplinear
|
Edge (vertex) | Float |
Defines how strongly the wire resists oscillation due to stretching forces. |
Yes |
kangular
|
Edge (vertex) | Float | Defines how strongly the wire resists bending. | Yes |
dampangular
|
Edge (vertex) | Float |
Defines how strongly the wire resists oscillation due to bending forces. |
Yes |
targetstiffness
|
Point | Float | Defines how strongly the wire resists deforming from the animated position. | Yes |
targetdamping
|
Point | Float | Defines how strongly the wire resists oscillation due to stretch forces. | Yes |
normaldrag
|
Point | Float | The component of drag in the directions normal to the wire. Increasing this will make the wire go along with any wind that blows normal to the wire. | Yes |
tangentdrag
|
Point | Float | The component of drag in the direction tangent to the wire. Increasing this will make the wire go along with any wind that blows tangent to the wire. | Yes |
nocollide
|
Edge (vertex) | Float or Integer | Collision detection for the edge is disabled if either of the points defining the edge have values greater than 0.5. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to SDF. | No |
restP
|
Point | Vector | Rest position of each point. | No |
restorient
|
Point | Float4 | Rest orientation of each point. | No |
gluetoanimation
|
Point | Float or Integer | Values greater than 0.5 cause a point’s position and orientation to be constrained to the input geometry. | No |
pintoanimation
|
Point | Float or Integer | Values greater than 0.5 cause a point’s position to be constrained to the input geometry. | No |
animationP
|
Point | Vector | Target position of each point. | No |
animationorient
|
Point | Float4 | Target orientation of each point. | No |
animationv
|
Point | Vector | Target velocity of each point. | No |
animationw
|
Point | Vector | Target angular velocity of each point. | No |
independentcollisionallowed
|
Point | Integer | A value of 0 disables the external collisions for the point. A value of 1 enables external collisions. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
independentcollisionresolved
|
Point | Integer | A value of 0 temporarily disables external collisions for the point, indicating that the collision was not properly resolved. This is updated each step. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
codependentcollisionallowed
|
Point | Integer | A value of 0 disables the soft body (objects solved by the same solver) collisions for the point. A value of 1 enables soft body collisions. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
codependentcollisionresolved
|
Point | Integer | A value of 0 temporarily disables soft body (objects solved by the same solver) collisions for the point, indicating that the collision was not properly resolved. This is updated each step. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
selfcollisionallowed
|
Point | Integer | A value of 0 disables the self collisions for the point. A value of 1 enables self collisions. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
selfcollisionresolved
|
Point | Integer | A value of 0 temporarily disables self collisions for the point, indicating that the collision was not properly resolved. This is updated each step. This attribute is only used when the Wire Solver’s Collision Handling parameter is set to Local Geometric or Global Geometric. | No |
Tip
Mass is distributed to the points of a wire object according to the width and length of each segment.
Both the Mass and Density parameters let you adjust the total mass of the object. Density is the default method, since it lets you have consistent behavior regardless of the volume of wires you give it. For example, if you make a wire twice as long, it will become twice as heavy.
Tip
The default value of 1000 is the density of water. Try a lighter value, such as 600 for hair.
Note
When the Wire Solver’s Collision Handling parameter is set to SDF, it uses an alternate method for detection and processing collisions. With this alternate method, the nocollide
attribute should be used instead of selfcollisionsallowed
.
Parameters
Creation Frame Specifies Simulation Frame
Determines if the creation frame refers to global Houdini
frames ($F
) or to simulation specific frames ($SF
). The
latter is affected by the offset time and scale time at the
DOP network level.
Creation Frame
The frame number on which the object will be created. The object is created only when the current frame number is equal to this parameter value. This means the DOP Network must evaluate a timestep at the specified frame, or the object will not be created.
For example, if this value is set to 3.5, the
Timestep parameter of the DOP Network must be changed to
1/(2*$FPS)
to ensure the DOP Network has a timestep at frame
3.5.
Number of Objects
Instead of making a single object, you can create a number of
identical objects. You can set each object’s parameters
individually by using the $OBJID
expression.
Object Name
The name for the created object. This is the name that shows up in the details view and is used to reference this particular object externally.
Note
While it is possible to have many objects with the same name, this complicates writing references, so it is recommended to use something like $OBJID
in the name.
Solve On Creation Frame
For the newly created objects, this parameter controls whether or not the solver for that object should solve for the object on the timestep in which it was created.
Usually this parameter will be turned on if this node is creating objects in the middle of a simulation rather than creating objects for the initial state of the simulation.
Allow Caching
By preventing a large object from being cached, you can ensure there is enough room in the cache for the previous frames of its collision geometry.
This option should only be set when you are working with a very large sim. It is much better just to use a larger memory cache if possible.
Use Object Transform
The transform of the object containing the chosen SOP is applied to the geometry.
SOP Path
Initial State
The path to a SOP (or an Object, in which case the display SOP is used) which will be the initial pose for this simulation object.
Position
Initial position in world space of the object.
Rotation
Initial orientation of the object. This is in RX/RY/RZ format.
Pivot
Local space position around which rotation is applied.
Velocity
Initial velocity of the object.
Angular Velocity
Initial angular velocity of the object.
Geometry
Import Rest Geometry
Causes the Rest Geometry to be re-evaluated each frame.
Rest Geometry
The path to a SOP (or an Object, in which case the display SOP is used) which will be the rest geometry for this object.
Import Target Geometry
Causes the Target Geometry to be re-evaluated each frame.
Target Geometry
The path to a SOP (or an Object, in which case the display SOP is used) which will be the target geometry for this object.
Target Stiffness
Этот параметр определяет, насколько сильно wire объект сопротивляется деформации анимированной геометрии.
Target Damping
Этот параметр определяет, насколько сильно wire объект сопротивляется колебаниям из-за сил растяжения.
Material
Physical
Compute Mass
Определяет, будет ли масса автоматически вычисляться из плотности и объема объекта.
Density
Масса wire объекта - это его объем, умноженный на его плотность. На объем влияет параметр 'width'.
Mass
Абсолютная масса объекта.
Width
Ширина wire объекта определяет диаметр каждого цилиндрического сегмента.
Friction
Коэффициент трения объекта. Значение 0 означает, что у объекта нет трения. Данный параметр определяет, насколько столкновения влияют на скорость движения по касательной.
Dynamic Friction Scale
Объект при скольжении может иметь более низкий коэффициент трения, чем объект в состоянии покоя. Данный параметр является коэффициентом, связывающим эти два состояния. Это не коэффициент трения, а шкала от нуля до единицы.
Значение 1 означает, что динамическое трение равно статическому трению. Значение 0 означает, что, как только статическое трение преодолевается, то у объекта отсутствует трение.
Elasticity
Linear Spring Constant
Этот параметр определяет, насколько сильно wire объект сопротивляется растяжению.
Linear Damping Constant
Этот параметр определяет, насколько сильно wire объект сопротивляется колебаниям благодаря силам растяжения.
Angular Spring Constant
Этот параметр определяет, насколько сильно wire объект сопротивляется изгибу.
Angular Damping Constant
Этот параметр определяет, насколько сильно wire объект сопротивляется колебаниям благодаря силам изгиба.
Adjust For Length
Включение этого параметра позволит отрегулировать силу упругости и амортизации в зависимости от длины сегмента. Это позволяет избежать зависимости гибкости wire объекта от количества сегментов.
Adjust For Mass
Включение этого параметра позволит отрегулировать силу упругости и амортизации в зависимости от массы сегмента. Это позволяет избежать зависимости гибкости wire объекта от массы.
Plasticity
Stretch Threshold
Этот параметр определяет предел растяжения wire объекта.
Stretch Rate
Этот параметр определяет, как быстро wire объект достигнет предела растяжения.
Stretch Hardening
Этот параметр определяет, в каком случае wire объект при растяжении становится более тугим (если значение больше 1) или ослабленным (если меньше 1).
Bend Threshold
Этот параметр определяет предел изгиба wire объекта.
Bend Rate
Этот параметр определяет, как быстро wire объект достигнет предела изгиба.
Bend Hardening
Этот параметр определяет, в каком случае wire объект при изгибании становится более тугим (если значение больше 1) или ослабленным (если меньше 1).
Fracturing
Enable Fracturing
Fracture Threshold
This is the amount of relative stretch that will cause the geometry to break up into separate parts during the simulation. For example, if the threshold is set to 0.1, then the geometry may break in places where there is more than 10% stretch compared to the rest geometry.
Collisions
Collide Independent
If enabled, the wire object will be prevented from touching or passing through any affectors that have a Volume collider label (e.g., RBD Objects or the ground plane). This can make the simulation slower.
Collide Codependent
If enabled, the wire object will be prevented from touching or passing through all of its wire affectors. This can make the simulation much slower.
Collide Self
If enabled, the wire object will be prevented from touching or passing through itself. This can make the simulation much slower.
Repulsion
Сила отталкивания применяется для аккуратного раздвигания пересекающейся геометрии (включая пересечения, установленные параметром Collision Width). Этот параметр регулирует эту силу.
Collision Width
The width that is used to calculate whether the wire object has collided. This is scaled by the same point attributes as the width found in the Physical tab. This width acts as a diameter, creating a cylinder of this diameter between the end points of a wire segment.
When a wire object collides with a cloth object, the Cloth Thickness parameter in the cloth object will be used (it is used in the same way as described by the cloth object).
When a wire object collides with a non-wire, non-cloth object, then only the wire object will have a film around it (the polygons in the non-wire object will be treated as having a thickness of zero).
Drag
Normal Drag
Сила сопротивления оказывается в направлениях перпендикулярных wire объекту. Увеличение этого параметра приведет к тому, что wire объект будет развеваться по ветру, дующему на него. Для реалистичного взаимодействия с ветром, Normal Drag следует выбирать больше (примерно в 10 раз), чем Tangent Drag.
Tangent Drag
Оказывается сила сопротивления в направлениях касательных к wire объекту. Увеличение этого параметра приведет к тому, что wire объект будет следовать направлению ветра, не препятствуя ему.
External Velocity Field
The name of the external velocity fields on affectors that the wire will
respond to. The default is vel
, which will make the wire react to fluids
and smoke when the Tangent Drag and the Normal Drag have been
chosen sufficiently large. The Tangent Drag and Normal Drag forces
are computed by comparing the wire’s velocity with the external velocity.
External Velocity Offset
This offset is added to any velocity that’s read from the velocity field. When there’s no velocity field, then the offset can be used to create a wind force which has constant velocity everywhere. This wind effect is more realistic and more accurate than the wind that is generated by DOP Forces.
Visualization
Width
Turn this on to visualize the wire’s collision width in the viewport.
Width Color
Penetration
Turn this on to visualize the parts of the wire object which have collided, but which did not have the collision resolved.
Penetration Color
Use this parameter to choose the color for visualizing the wire’s width in the viewport.
Force Scale
This is used to define the scale of the force lines drawn in the viewport. Use a small value if the lines are too long and distracting, and a large value if you can’t see any lines.
Torque Scale
This is used to define the scale of the torque lines drawn in the viewport. Use a small value if the lines are too long and distracting, and a large value if you can’t see any lines.
External Force
Turn this on to see external forces, applied by DOPs Force nodes (such as the Fan DOP).
External Force Color
Use this parameter to choose the color for external forces in the viewport.
External Torque
Turn this on to see external torques, applied by DOPs Force nodes (such as the Drag DOP).
External Torque Color
Use this parameter to choose the color for external torques in the viewport.
Internal Force
Turn this on to see internal forces generated by a Wire Solver to resist stretching.
Internal Force Color
Use this parameter to choose the color for internal forces in the viewport.
Internal Torque
Turn this on to see internal torques generated by a Wire Solver to resist bending.
Internal Torque Color
Use this parameter to choose the color for internal torques in the viewport.
Collision Force
Turn this on to see the force preventing collisions in the viewport. This includes wire/volume collisions, wire/wire collisions and self-collisions.
Collision Force Color
Use this parameter to choose the color for collision forces in the viewport.
Constraint Force
Turn this on to see forces generated by a Wire Solver to satisfy constraints.
Constraint Force Color
Use this parameter to choose the color for constraint forces in the viewport.
Constraint Torque
Turn this on to see torques generated by a Wire Solver to satisfy constraints.
Constraint Torque Color
Use this parameter to choose the color for constraint torques in the viewport.
Impacts
Turn this on to see impacts in the viewport. The impacts may appear in strange locations: they are shown at the position where a collision would have happened.
Impacts Scale
This is used to define the scale of the lines drawn in the viewport to show impacts.
Use a small value if the lines are too long and distracting, and a large value if you can’t see the lines.
Impacts Color
Use this parameter to choose the color for impacts in the viewport.
Show Substep Impacts
Use this to show all impacts during a DOPs step. The wire solver takes many substeps per DOPs step. If this is cleared, only the impacts for the current substep are shown.
Axis
Turn this on to see each point’s orientation.
Axis Scale
This is used to define the scale of the axis lines drawn in the viewport. Use a small value if the lines are too long and distracting, and a large value if you can’t see any lines.
X Axis Color
Use this parameter to choose the color for local x-axis.
Y Axis Color
Use this parameter to choose the color for local y-axis.
Z Axis Color
Use this parameter to choose the color for local z-axis.
Tip
There is no bounciness parameter on wires. However, an external force could be applied to mimic bounciness.
Outputs
First
The wire object created by this node is sent through the single output.
Locals
ST
This value is the simulation time for which the node is being evaluated.
This value may not be equal to the current Houdini time represented by the variable T, depending on the settings of the DOP Network Offset Time and Time Scale parameters.
This value is guaranteed to have a value of zero at the
start of a simulation, so when testing for the first timestep of a
simulation, it is best to use a test like $ST == 0
rather than
$T == 0
or $FF == 1
.
SF
This value is the simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.
This value may not be equal to the current Houdini frame number represented by the variable F, depending on the settings of the DOP Network parameters. Instead, this value is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).
TIMESTEP
This value is the size of a simulation timestep. This value is useful to scale values that are expressed in units per second, but are applied on each timestep.
SFPS
This value is the inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.
SNOBJ
This is the number of objects in the simulation. For nodes that create objects such as the Empty Object node, this value will increase for each object that is evaluated.
A good way to guarantee unique object names is to use an expression
like object_$SNOBJ
.
NOBJ
This value is the number of objects that will be evaluated by the current node during this timestep. This value will often be different from SNOBJ, as many nodes do not process all the objects in a simulation.
This value may return 0 if the node does not process each object sequentially (such as the Group DOP).
OBJ
This value is the index of the specific object being processed by the node. This value will always run from zero to NOBJ-1 in a given timestep. This value does not identify the current object within the simulation like OBJID or OBJNAME, just the object’s position in the current order of processing.
This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).
OBJID
This is the unique object identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused.
The object identifier can always be used to uniquely identify a given object. This makes this variable very useful in situations where each object needs to be treated differently. It can be used to produce a unique random number for each object, for example.
This value is also the best way to look up information on an object using the dopfield expression function. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).
ALLOBJIDS
This string contains a space separated list of the unique object identifiers for every object being processed by the current node.
ALLOBJNAMES
This string contains a space separated list of the names of every object being processed by the current node.
OBJCT
This value is the simulation time (see variable ST) at which the current object was created.
Therefore, to check if an object was created
on the current timestep, the expression $ST == $OBJCT
should
always be used. This value will be zero if the node does not process
objects sequentially (such as the Group DOP).
OBJCF
This value is the simulation frame (see variable SF) at which the current object was created.
This value is equivalent to using the dopsttoframe expression on the OBJCT variable. This value will be zero if the node does not process objects sequentially (such as the Group DOP).
OBJNAME
This is a string value containing the name of the object being processed.
Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.
The object name can
also be used to treat a number of similar objects (with the same
name) as a virtual group. If there are 20 objects named "myobject",
specifying strcmp($OBJNAME, "myobject") == 0
in the activation field
of a DOP will cause that DOP to operate only on those 20 objects. This
value will be the empty string if the node does not process objects
sequentially (such as the Group DOP).
DOPNET
This is a string value containing the full path of the current DOP Network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP Network that contains the node.
Note
Most dynamics nodes have local variables with the same names as the node’s parameters. For example, in a Position node, you could write the expression:
$tx + 0.1
…to make the object move 0.1 units along the X axis at each timestep.
Examples
CompressedSpring Example for Wire Object dynamics node
This example demonstrates how an initial pose may be specified for a wire object.
The following examples include this node.
ApplyRelationship Example for Apply Relationship dynamics node
PointAnchors Example for Constraint Network dynamics node
FlipFluidWire Example for FLIP Solver dynamics node
FluidWireInteraction Example for Fluid Force dynamics node
AnimatedSkin Example for Wire Glue Constraint dynamics node
CompressedSpring Example for Wire Object dynamics node
BeadCurtain Example for Wire Solver dynamics node
BendingTree Example for Wire Solver dynamics node
BreakWire Example for Wire Solver dynamics node
CurveAdvection Example for Wire Solver dynamics node
Pendulum Example for Wire Solver dynamics node
FurBallWorkflow Example for Fur geometry node
See also |