Справка Houdini на русском Nodes Dynamics nodes

POP Object dynamics node

Converts a regular particle system into a dynamic object capable of interacting correctly with other objects in the DOP environment.

On this page

The result is ready for use by the POP Solver.

Parameters

Creation Frame Specifies Simulation Frame

Determines if the creation frame refers to global Houdini frames ($F) or to simulation specific frames ($SF).

The latter is affected by the offset time and scale time at the DOP network level.

Creation Frame

The frame number on which the object will be created. The object is created only when the current frame number is equal to this parameter value. This means the DOP Network must evaluate a timestep at the specified frame, or the object will not be created.

For example, if this value is set to 3.5, the Timestep parameter of the DOP Network must be changed to 1/(2*$FPS) to ensure the DOP Network has a timestep at frame 3.5.

Object Name

The name for the created object. This is the name that shows up in the details view and is used to reference this particular object externally.

Note

While it is possible to have many objects with the same name, this complicates writing references, so it is recommended to use something like $OBJID in the name.

Initial Geometry

The path to a SOP which will be used as the initial state for the POP Object.

If the specified SOP contains geometry other than particles, the POP Solver can be configured to automatically convert these other primitives into particle systems.

Use Object Transform

Specifies whether or not the transform of the object containing the Initial Geometry should be embedded in the Geometry data.

Guides

Instance Guides

Enables the display of any instancepath attribute as a guide geometry.

Collisions

Tolerance

When colliding with the surface of another object, this tolerance value is used by the ray intersection code. Any time a point gets within this distance of the surface it is counted as a collision.

Volume Offset

When colliding points against a Volume representation, the surface of the Volume is effectively pushed out by this amount.

Like the Tolerance value above, it causes a collision to be generated if a point comes within this distance of the real Volume.

Physical

Bounce

The elasticity of the object. If two objects of bounce 1.0 collide, they will rebound without losing energy. If two objects of bounce 0.0 collide, they will come to a standstill.

Bounce Forward

The tangential elasticity of the object. If two objects of bounce forward 1.0 collide, their tangential motion will be affected only by friction. If two objects of bounce forward 0.0 collide, their tangential motion will be matched.

Friction

The coefficient of friction of the object. A value of 0 means the object is frictionless.

This governs how much the tangential velocity is affected by collisions and resting contacts.

Dynamic Friction Scale

An object sliding may have a lower friction coefficient than an object at rest. This is the scale factor that relates the two. It is not a friction coefficient, but a scale between zero and one.

A value of one means that dynamic friction is equal to static friction. A scale of zero means that as soon as static friction is overcome the object acts without friction.

Temperature

Temperature marks how warm or cool an object is. This is used in gas simulations for ignition points of fuel or for buoyancy computations.

Since this does not relate directly to any real world temperature scale, ambient temperature is usually considered 0.

Outputs

First

The simulation object created by this node is sent through the single output.

Locals

ST

This value is the simulation time for which the node is being evaluated.

This value may not be equal to the current Houdini time represented by the variable T, depending on the settings of the DOP Network Offset Time and Time Scale parameters.

This value is guaranteed to have a value of zero at the start of a simulation, so when testing for the first timestep of a simulation, it is best to use a test like $ST == 0 rather than $T == 0 or $FF == 1.

SF

This value is the simulation frame (or more accurately, the simulation time step number) for which the node is being evaluated.

This value may not be equal to the current Houdini frame number represented by the variable F, depending on the settings of the DOP Network parameters. Instead, this value is equal to the simulation time (ST) divided by the simulation timestep size (TIMESTEP).

TIMESTEP

This value is the size of a simulation timestep. This value is useful to scale values that are expressed in units per second, but are applied on each timestep.

SFPS

This value is the inverse of the TIMESTEP value. It is the number of timesteps per second of simulation time.

SNOBJ

This is the number of objects in the simulation. For nodes that create objects such as the Empty Object node, this value will increase for each object that is evaluated.

A good way to guarantee unique object names is to use an expression like object_$SNOBJ.

NOBJ

This value is the number of objects that will be evaluated by the current node during this timestep. This value will often be different from SNOBJ, as many nodes do not process all the objects in a simulation.

This value may return 0 if the node does not process each object sequentially (such as the Group DOP).

OBJ

This value is the index of the specific object being processed by the node. This value will always run from zero to NOBJ-1 in a given timestep. This value does not identify the current object within the simulation like OBJID or OBJNAME, just the object’s position in the current order of processing.

This value is useful for generating a random number for each object, or simply splitting the objects into two or more groups to be processed in different ways. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

OBJID

This is the unique object identifier for the object being processed. Every object is assigned an integer value that is unique among all objects in the simulation for all time. Even if an object is deleted, its identifier is never reused.

The object identifier can always be used to uniquely identify a given object. This makes this variable very useful in situations where each object needs to be treated differently. It can be used to produce a unique random number for each object, for example.

This value is also the best way to look up information on an object using the dopfield expression function. This value will be -1 if the node does not process objects sequentially (such as the Group DOP).

ALLOBJIDS

This string contains a space separated list of the unique object identifiers for every object being processed by the current node.

ALLOBJNAMES

This string contains a space separated list of the names of every object being processed by the current node.

OBJCT

This value is the simulation time (see variable ST) at which the current object was created.

Therefore, to check if an object was created on the current timestep, the expression $ST == $OBJCT should always be used. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJCF

This value is the simulation frame (see variable SF) at which the current object was created.

This value is equivalent to using the dopsttoframe expression on the OBJCT variable. This value will be zero if the node does not process objects sequentially (such as the Group DOP).

OBJNAME

This is a string value containing the name of the object being processed.

Object names are not guaranteed to be unique within a simulation. However, if you name your objects carefully so that they are unique, the object name can be a much easier way to identify an object than the unique object identifier, OBJID.

The object name can also be used to treat a number of similar objects (with the same name) as a virtual group. If there are 20 objects named "myobject", specifying strcmp($OBJNAME, "myobject") == 0 in the activation field of a DOP will cause that DOP to operate only on those 20 objects. This value will be the empty string if the node does not process objects sequentially (such as the Group DOP).

DOPNET

This is a string value containing the full path of the current DOP Network. This value is most useful in DOP subnet digital assets where you want to know the path to the DOP Network that contains the node.

Note

Most dynamics nodes have local variables with the same names as the node’s parameters. For example, in a Position node, you could write the expression:

$tx + 0.1

…to make the object move 0.1 units along the X axis at each timestep.

Examples

The following examples include this node.

FieldForceSmoke Example for Field Force dynamics node

FEMSpheres Example for finiteelementsolver dynamics node

AdvectByFilaments Example for POP Advect by Filaments dynamics node

AdvectByVolume Example for POP Advect by Volumes dynamics node

ParticlesAttract Example for POP Attract dynamics node

ParticlesIntercept Example for POP Attract dynamics node

PointAttraction Example for POP Attract dynamics node

SphereAxisForce Example for POP Axis Force dynamics node

TorusAxisForce Example for POP Axis Force dynamics node

ParticleCollisions Example for POP Collision Detect dynamics node

ColorVex Example for POP Color dynamics node

CurveForce Example for POP Curve Force dynamics node

FlockInPops Example for POP Flock dynamics node

CurlForce Example for POP Force dynamics node

BaconDrop Example for POP Grains dynamics node

KeyframedGrains Example for POP Grains dynamics node

TargetSand Example for POP Grains dynamics node

VaryingGrainSize Example for POP Grains dynamics node

SwarmBall Example for POP Interact dynamics node

LookatTarget Example for POP Lookat dynamics node

DragCenter Example for POP Property dynamics node

ProximateParticles Example for POP Proximity dynamics node

CrossTheStreams Example for POP Stream dynamics node

ShatterDebris Example for RBD Fractured Object dynamics node

popswithrbdcollision Example for RBD Point Object dynamics node

DentingWithPops Example for SOP Solver dynamics node

MountainSplash Example for Attribute Transfer geometry node

See also

Dynamics nodes