Справка Houdini на русском Nodes Geometry nodes

Pack Points geometry node

Packs points into a tiled grid of packed primitives.

On this page

Packing Points Spatially into Primitives

This SOP takes the input geometry and packages it up into a grid of packed primitives.

This provides a way of sorting point data so the delayed-load option on the File SOP can allow for only paging in regions of interest.

Packed primitives

Overview

Packed Primitives express a procedure to generate geometry at render time. The purpose is to decrease the amount of memory used when interacting with Houdini, by reducing duplication and only loading information when necessary.

Packed Primitives have information about geometry embedded inside of them. The information could be an actual piece of geometry stored in memory, a reference to a part of another piece of geometry, or a file path to geometry stored on disk.

Mantra, the Houdini viewport, the solvers, and so on, know how to interpret the packed information, and can render/display/work with the geometry efficiently.

Packed primitives cannot be edited – they are lightweight references. If you want to edit packed geometry, you have to use the Unpack node to extract the part of the geometry you want to edit, modify it, and then optionally repack the geometry using the Pack node.

Packed primitives are useful for rendering and simulating heavy geometry, or large numbers of copies/instances. Any time the geometry will not change (for example, non-deforming RBD objects) you can benefit from packing the geometry.

Types of packed primitives

In-memory packed primitives

You get an in-memory packed primitive by converting geometry to a packed primitive using the Pack geometry node. This creates a Packed Geometry Primitive with an embedded reference to the current version of your geometry in memory. The "embedded" geometry becomes a single un-editable "primitive" with a single transform.

  • The "embedded geometry" is just a reference to content in memory. Copying a packed primitive copies the reference rather than the geometry itself. So the referenced geometry is shared among all copies of the packed primitive. This is more memory efficient than copying unpacked Houdini geometry, which creates independent duplicates of all points, primitives, attributes, and so on.

  • Copies of packed primitives use less memory, are simpler to transform, and can be drawn more efficiently in the viewport or rendered by Mantra.

  • Because the referenced geometry exists in a traditional network, you can easily generate procedural geometry which adapts to your scene, use stamping to generate variations of your packed geometry, or make interactive edits to your geometry while viewing the results live. Essentially, working with in-memory Packed Primitives is a more interactive and user-friendly version of traditional instancing workflows.

  • You can "unpack" individual copies of an in-memory packed primitive in a geometry network to create an actual copy of the referenced geometry. This allows you to generate procedural workflows which are a hybrid of traditional Houdini geometry and packed primitives.

  • "Packed" in this case does not mean "compressed" or "smaller". You are keeping the original geometry in RAM as well as using a bit of memory for each reference. A single packed primitive is not necessarily any more efficient than just using original piece of geometry. The benefit comes from the efficient representation of large number of copies that share the referenced geometry.

    This is important to remember when copy-stamping packed geometry. If every instance of your packed geometry is unique, you get no memory or performance benefits. In fact this will use more memory than "real" geometry would, because each packed primitive has its own overhead.

    (It’s possible to offset the cost of packing stamped geometry somewhat when there are limited numbers of stamped variations. See the Copy SOP's Cache stamping parameter.)

Packed disk primitives

A packed disk primitive embeds a reference to a file on disk. At display or render time, Mantra/Houdini reads the data from disk rather than always keeping it in memory. Some file formats, such as .bgeo and Alembic, make this very efficient by allowing fast random access to their contents.

You can load geometry from disk as a packed primitive using the File SOP's Load parameter to "Packed disk primitive".

A packed disk primitive is similar to an in-memory packed primitive: the “embedded” geometry appears as a single un-editable primitive with a single transform.

  • Much like in-memory packed primitives, a packed disk primitive is an excellent choice for efficiently creating copies of geometry in the viewport and Mantra. Copying a packed disk primitive just copies the reference to the disk file.

  • Because packed disk primitives simply load already-generated data from files, they are less dynamic than in-memory packed primitives. The only way to edit a packed disk primitive is to "unpack" it, copying the file data into memory.

  • The viewport does not copy the geometry for each instance, but simply draws the same data multiple times with different transforms. The viewport can also draw a much simpler representation of the referenced geometry, such as a point cloud or bounding box.

  • Like Houdini, Mantra can "stream" the data from the disk file as needed instead of copying it into memory, reducing Mantra’s memory usage.

  • Whereas Houdini must write the entire geometry for any in-memory geometry into the IFD (the scene description file it sends to Mantra), for packed disk primitives it simply writes the reference to the file on disk. This can make IFDs much faster to generate and smaller on disk for very large/complex scenes.

  • Packed disk primitives are ideal for scene assembly, especially for static background objects. Their small memory use at render time also makes them very useful for objects with large on-disk footprints, such as simulation output.

Packed Disk Sequence primitives

Packed Disk Sequence primitives are similar to Packed Disk primitives (see above), but the primitive references a sequence of geometry filenames and an index into the file sequence. When mantra loads the sequence primitive as part of the scene, it knows the full sequence (instead of just having the geometry for the current frame), so it can interpolate between frames for motion blur. So Packed Disk Sequence primitives are a simple way to instance animated geometry (in the form of per-frame geometry files) efficiently at render time with motion blur.

To import an animated sequence as a PDS, use a File SOP. Set the Load parameter to "Packed Disk Sequence". Click the file chooser icon next to the Geometry file parameter and choose the geometry sequence to load.

Note

Technically, when you're loading a PDS, the $F in the Geometry file pattern is interpolated between the values in the Frame range parameter (it doesn’t refer to the current frame as usual). We use $F here for consistency with the other modes, and so the file chooser works as you expect.

The Sequence index parameter on the Load node sets which (floating point) frame in the animated sequence to use. The default is $FF - 1. You can edit the index on an existing PDS primitive using the Packed Disk Edit SOP.

Packed disk primitives automatically cycle when the rendered frame is outside the animation’s frame range. You can change this by setting the primitive string attribute "wrap" on the packed disk sequence to one of "clamp", "cycle", "mirror" or "strict".

  • "cycle" automatically wraps the sample index to the valid range (the default behavior).

  • "clamp" clamps out of range index samples to the valid range (so, for example, if the valid frame range is 1-5, frame numbers greater than 5 will stick at frame 5).

  • "mirror" wraps by reversing in a zig-zag or ping-pong style.

  • "strict" gives empty geometry outside the valid frame range.

Packed fragments

When you pack geometry that includes a name attribute, each piece of geometry that shares the same name value becomes a packed fragment primitive, containing a reference to the original geometry. So each fragment shares the same geometry, but refers to a subset of it.

  • Packed fragment primitives are ideal for representing many pieces of a complete model. Especially where each fragment will receive some unique transformation, such as in a rigid body simulation.

  • If you "unpack" a fragment, only that part of the original model is copied into memory.

  • Because each fragment is just a reference to the original geometry, it’s very efficient to have a large number of them. However, if you're deleting many of the fragments, they can become more inefficient than just using real geometry. Even if you only have a few crumbs left, Houdini is still keeping the entire original model in memory, whereas if you used real geometry, memory usage would be high at first but go down as you deleted parts.

    You can try getting the best of both worlds by "unpacking" the remaining fragments at some point where you only have a few left.

How to

To...Do this

Convert SOP geometry into a packed primitive

Use the Pack SOP. The Pack node can create a new primitive with all the input geometry, or separate packed primitives based on the value of an attribute (such as name, as created by Shatter).

Extract a "sub-primitive" from inside a packed primitive

Use the Unpack SOP.

Import geometry from a dynamics network as a packed primitive

The DOP Import SOP has an option to import Geometry data from a dynamics network as a packed primitive.

Access attributes on packed geometry in a VEX shader

You can use the renderstate VEX function to get the value of attributes on packed geometry. For example, if the packed geometry has a Cd attribute, you can use renderstate("packed:Cd", PackedCd).

Note

You cannot set/use primitive attributes on the geometry other than the material attribute (which Houdini treats as a special case). Primitive-level attributes will not work in general since to Houdini the packed geometry looks like a single primitive with a single point.

Rendering

Packed primitives are extremely useful for rendering in Mantra. They let you generate IFD and render faster and use less memory and disk space. However, you should understand how Mantra works with packed primitives to take full advantage of them.

Material assignment

With standard geometry, you can assign materials at two levels:

  • At the object level, in the Geometry node's parameters.

  • At the geometry (SOPs) level, using the Material node to set the material attribute on certain primitives. This overrides the object material for the primitives that have it.

When Houdini generates the scene description (IFD) file for rendering, it checks objects and geometry attributes for material assignments, so it knows which shaders to include in the IFD.

When you use packed primitives, it adds a third possible level of material assignment:

  • Material attributes on the embedded geometry inside packed primitives. These override "higher" levels (primitive attributes and object materials).

However, when Houdini generates the IFD, it doesn’t look in the embedded geometry (which might be a very large file that would be slow to scan through). so it can’t know what material attributes the embedded geometry might have, so it won’t know to include the shaders in the IFD. Only when Mantra unpacks the primitives at render time will it find out it might not have the shaders it needs.

To work around this problem, you can tell Houdini to include all shaders in the scene in the IFD, regardless of whether they're assigned at the object or geometry levels. Turn on Save all SHOPs on the Mantra render node. (This will increase the on-disk size of your IFD by a small amount). As long as you load the shaders needed by packed primitives into the scene, they will be available at render time.

Tip

For how to assign shaders and override shading parameters "inside" packed geometry, see the help on material style sheets.

Displacement and subdivision surfaces

Houdini does displacement shading and subdivision surface rendering the same for packed geometry as for standard geometry. However, if you're primarily using packed geometry for instancing, and applying displacement shaders or using subdivision rendering, you need to think about dicing.

  • Before rendering a displaced or a subdivided surface, Mantra "dices" the geometry into smaller primitives until there is one primitive for every pixel (when shading quality is set to 1). This means it dices objects closer to the camera more than objects in the distance (which have less pixel coverage).

  • When instancing using packed geometry, this can cause a problem. The benefit of instancing is that geometry is shared across all instances. But if you add displacements or subdivision rendering, Mantra must load and dice each object individually, which means the geometry is no longer being shared.

  • To avoid this problem, you can add the Share Displacements Between Instances render property to the object containing your instances. Turning this parameter on will tell Mantra to:

    • Use the highest level of dicing necessary for the scene on one instance, and then

    • Share that diced geometry between all instances

  • This means objects far away will get "too much" detail. There is some potential for this to cause slowdowns, however the benefits of preserving instancing probably outweigh any downside.

    In the worst case, if "incorrect" dicing levels cause problems, you can split the instances between two objects based on distance from camera, so the "highest dicing level" is computed separately for "near" and "far".

    Alternatively, you could unpack instances close to the camera, removing them from the "highest necessary dicing level" calculation.

Attributes

Disk and in-memory packed primitive instances are simply pointers to the same file or memory, so each instance can’t have individual attribute values (except the material and vel (velocity) attributes which is specifically hacked to work, see below).

Packed fragment instances can have individual attributes because they are coalesced, but this also means they're less efficient than on-disk or in-memory packed primitives.

Alembic primitive instances cannot have individual attribute values. However, there is an option to "unshare" Alembic primitives in Mantra. This uses a lot more memory but allows you to have individual attributes on Alembic primitive instances at render time.

Mantra creates a tree of virtual Mantra objects for packed primitives, and copies the material attribute down to each virtual object in the tree (if they don’t have a material attribute of their own), so materials on the Geometry object are properly applied to packed primitives inside.

Similarly, the vel (velocity) attribute is added down through the virtual object tree, so motion blur will work properly.

Primitive attributes on packed primitives are copied to object properties on the virtual Mantra object. You can access them in shader code using the Render State VOP or renderstate VEX function.

If you have a primitive material attribute inside a packed primitive, Houdini won’t look inside the primitive to know that it needs to include that material in the file it sends to Mantra. You can fix this (at the expense of a larger render file) by turning on the Declare all SHOPs option, which tells Houdini to simply include all materials in the render file.

When Mantra renders packed primitive fragments, it copies attributes from the packed primitive onto the geometry, so velocity blur on fragments will work. Other packed primitive types will not work this way since they are rendered as instances.

Parameters

Group

The subset of the input points to pack.

Tile Size

Space is divided into tiles of this size. All points inside a tile are put into a single new packed primitive. For efficiency, there should be at least a thousand points in each resulting primitive.

Display As

How packed primitives should be displayed in the viewport.

Path Attribute

The path attribute assigned to the newly created packed primitive. If this field is left blank, no path attribute will be created.

Pivot Location

Specifies how to initialize the offset for the point referenced by the packed primitive.

See also

Geometry nodes

  • Adaptive Prune

    Removes elements while trying to maintain the overall appearance.

  • Add

    Creates Points or Polygons, or adds points/polys to an input.

  • Agent

    Creates agent primitives.

  • Agent Clip

    Adds new clips to agent primitives.

  • Agent Clip Properties

    Defines how agents' animation clips should be played back.

  • Agent Clip Transition Graph

    Creates geometry describing possible transitions between animation clips.

  • Agent Collision Layer

    Creates a new agent layer that is suitable for collision detection.

  • Agent Configure Joints

    Creates point attributes that specify the rotation limits of an agent’s joints.

  • Agent Constraint Network

    Builds a constraint network to hold an agent’s limbs together.

  • Agent Edit

    Edits properties of agent primitives.

  • Agent Layer

    Adds a new layer to agent primitives.

  • Agent Look At

    Adjusts the head of an agent to look at a specific object or position.

  • Agent Look At

    Adjusts the head of an agent to look at a specific object or position.

  • Agent Prep

    Adds various common point attributes to agents for use by other crowd nodes.

  • Agent Prep

    Adds various common point attributes to agents for use by other crowd nodes.

  • Agent Proxy

    Provides simple proxy geometry for an agent.

  • Agent Relationship

    Creates parent-child relationships between agents.

  • Agent Terrain Adaptation

    Adapts agents' legs to conform to terrain and prevent the feet from sliding.

  • Agent Transform Group

    Adds new transform groups to agent primitives.

  • Alembic

    Loads the geometry from an Alembic scene archive (.abc) file into a geometry network.

  • Alembic Group

    Creates a geometry group for Alembic primitives.

  • Alembic Primitive

    Modifies intrinsic properties of Alembic primitives.

  • Alembic ROP output driver

  • Align

    Aligns a group of primitives to each other or to an auxiliary input.

  • Assemble

    Cleans up a series of break operations and creates the resulting pieces.

  • Attribute Blur

    Blurs out (or "relaxes") points in a mesh or a point cloud.

  • Attribute Cast

    Changes the size/precision Houdini uses to store an attribute.

  • Attribute Composite

    Composites vertex, point, primitive, and/or detail attributes between two or more selections.

  • Attribute Copy

    Copies attributes between groups of vertices, points, or primitives.

  • Attribute Create

    Adds or edits user defined attributes.

  • Attribute Delete

    Deletes point and primitive attributes.

  • Attribute Expression

    Allows simple VEX expressions to modify attributes.

  • Attribute Fade

    Fades a point attribute in and out over time.

  • Attribute Interpolate

    Interpolates attributes within primitives or based on explicit weights.

  • Attribute Mirror

    Copies and flips attributes from one side of a plane to another.

  • Attribute Promote

    Promotes or demotes attributes from one geometry level to another.

  • Attribute Randomize

    Generates random attribute values of various distributions.

  • Attribute Rename

    Renames or deletes point and primitive attributes.

  • Attribute Reorient

    Modifies point attributes based on differences between two models.

  • Attribute String Edit

    Edits string attribute values.

  • Attribute Swap

    Copies, moves, or swaps the contents of attributes.

  • Attribute Transfer

    Transfers vertex, point, primitive, and/or detail attributes between two models.

  • Attribute Transfer By UV

    Transfers attributes between two geometries based on UV proximity.

  • Attribute VOP

    Runs a VOP network to modify geometry attributes.

  • Attribute Wrangle

    Runs a VEX snippet to modify attribute values.

  • Attribute from Map

    Samples texture map information to a point attribute.

  • Attribute from Volume

    Copies information from a volume onto the point attributes of another piece of geometry, with optional remapping.

  • Bake ODE

    Converts primitives for ODE and Bullet solvers.

  • Bake Volume

    Computes lighting values within volume primitives

  • Basis

    Provides operations for moving knots within the parametric space of a NURBS curve or surface.

  • Bend

    Applies deformations such as bend, taper, squash/stretch, and twist.

  • Blast

    Deletes primitives, points, edges or breakpoints.

  • Blend Shapes

    Computes a 3D metamorphosis between shapes with the same topology.

  • Block Begin

    The start of a looping block.

  • Block Begin Compile

    The start of a compile block.

  • Block End

    The end/output of a looping block.

  • Block End Compile

    The end/output of a compile block.

  • Bone Capture

    Supports Bone Deform by assigning capture weights to bones.

  • Bone Capture Biharmonic

    Supports Deform by assigning capture weights to points based on biharmonic functions on tetrahedral meshes.

  • Bone Capture Lines

    Supports Bone Capture Biharmonic by creating lines from bones with suitable attributes.

  • Bone Capture Proximity

    Supports Bone Deform by assigning capture weights to points based on distance to bones.

  • Bone Deform

    Uses capture attributes created from bones to deform geometry according to their movement.

  • Bone Link

    Creates default geometry for Bone objects.

  • Boolean

    Combines two polygonal objects with boolean operators, or finds the intersection lines between two polygonal objects.

  • Bound

    Creates an axis-aligned bounding box or sphere for the input geometry.

  • Box

    Creates a cube or six-sided rectangular box.

  • Break

    Breaks the input geometry using the specified cutting shape.

  • Bulge

    Deforms the points in the first input using one or more magnets from the second input.

  • Cache

    Records and caches its input geometry for faster playback.

  • Cap

    Closes open areas with flat or rounded coverings.

  • Capture Attribute Pack

    Converts array attributes into a single index-pair capture attribute.

  • Capture Attribute Unpack

    Converts a single index-pair capture attribute into per-point and detail array attributes.

  • Capture Correct

    Adjusts capture regions and capture weights.

  • Capture Layer Paint

    Lets you paint capture attributes directly onto geometry.

  • Capture Mirror

    Copies capture attributes from one half of a symmetric model to the other.

  • Capture Override

    Overrides the capture weights on individual points.

  • Capture Region

    Supports Capture and Deform operation by creating a volume within which points are captured to a bone.

  • Carve

    Slices, cuts or extracts points or cross-sections from a primitive.

  • Channel

    Reads sample data from a chop and converts it into point positions and point attributes.

  • Circle

    Creates open or closed arcs, circles and ellipses.

  • Clay

    Lets you deform NURBS faces and NURBS surfaces by pulling points that lie directly on them.

  • Clean

    Helps clean up dirty models.

  • Clip

    Removes or groups geometry on one side of a plane, or creases geometry along a plane.

  • Cloth Capture

    Captures low-res simulated cloth.

  • Cloth Deform

    Deforms geometry captured by the Cloth Capture SOP.

  • Cloud

    Creates a volume representation of source geometry.

  • Cloud Light

    Fills a volume with a diffuse light.

  • Cloud Noise

    Applies a cloud like noise to a Fog volume.

  • Cluster

    Low-level machinery to cluster points based on their positions (or any vector attribute).

  • Cluster Points

    Higher-level node to cluster points based on their positions (or any vector attribute).

  • Collision Source

    Creates geometry and VDB volumes for use with DOPs collisions.

  • Color

    Adds color attributes to geometry.

  • Comb

    Adjust surface point normals by painting.

  • Connect Adjacent Pieces

    Creates lines between nearby pieces.

  • Connectivity

    Creates an attribute with a unique value for each set of connected primitives or points.

  • Control

    Creates simple geometry for use as control shapes.

  • Convert

    Converts geometry from one geometry type to another.

  • Convert HeightField

    Converts a 2D height field to a 3D VDB volume, polygon surface, or polygon soup surface.

  • Convert Line

    Converts the input geometry into line segments.

  • Convert Meta

    Polygonizes metaball geometry.

  • Convert Tets

    Generates the oriented surface of a tetrahedron mesh.

  • Convert VDB

    Converts sparse volumes.

  • Convert VDB Points

    Converts a Point Cloud into a VDB Points Primitive, or vice versa.

  • Convert Volume

    Converts the iso-surface of a volume into a polygonal surface.

  • Copy Stamp

    Creates multiple copies of the input geometry, or copies the geometry onto the points of the second input.

  • Copy and Transform

    Copies geometry and applies transformations to the copies.

  • Copy to Points

    Copies the geometry in the first input onto the points of the second input.

  • Crease

    Manually adds or removes a creaseweight attribute to/from polygon edges, for use with the Subdivide SOP.

  • Creep

    Deforms and animates a piece of geometry across a surface.

  • Crowd Source

    Populates a crowd of agent primitives.

  • Crowd Source

    Creates crowd agents to be used with the crowd solver.

  • Curve

    Creates polygonal, NURBS, or Bezier curves.

  • Curveclay

    Deforms a spline surface by reshaping a curve on the surface.

  • Curvesect

    Finds the intersections (or points of minimum distance) between two or more curves or faces.

  • DOP I/O

    Imports fields from DOP simulations, saves them to disk, and loads them back again.

  • DOP Import Fields

    Imports scalar and vector fields from a DOP simulation.

  • DOP Import Records

    Imports option and record data from DOP simulations into points with point attributes.

  • DOP Network

  • Debris Source

    Generates point emission sources for debris from separating fractured rigid body objects.

  • Deformation Wrangle

    Runs a VEX snippet to deform geometry.

  • Delete

    Deletes input geometry by group, entity number, bounding volume, primitive/point/edge normals, and/or degeneracy.

  • Delete Overlapping Polygons

    Removes polygons that overlap.

  • DeltaMush

    Smooths out (or "relaxes") point deformations.

  • Dissolve

    Deletes edges from the input polygonal geometry merging polygons with shared edges.

  • Dissolve

    Deletes points, primitives, and edges from the input geometry and repairs any holes left behind.

  • Divide

    Divides, smooths, and triangulates polygons.

  • Dop Import

    Imports and transforms geometry based on information extracted from a DOP simulation.

  • Draw Curve

    Creates a curve based on user input in the viewport.

  • Draw Guides

  • Each

    Culls the input geometry according to the specifications of the For Each SOP.

  • Edge Collapse

    Collapses edges and faces to their centerpoints.

  • Edge Cusp

    Sharpens edges by uniquing their points and recomputing point normals.

  • Edge Divide

    Inserts points on the edges of polygons and optionally connects them.

  • Edge Flip

    Flips the direction of polygon edges.

  • Edge Transport

    Copies and optionally modifies attribute values along edges networks and curves.

  • Edit

    Edits points, edges, or faces interactively.

  • Ends

    Closes, opens, or clamps end points.

  • Enumerate

    Sets an attribute on selected points or primitives to sequential numbers.

  • Error

    Generates a message, warning, or error, which can show up on a parent asset.

  • Exploded View

    Pushes geometry out from the center to create an exploded view.

  • Extrude

    Extrudes geometry along a normal.

  • Extrude Volume

    Extrudes surface geometry into a volume.

  • Facet

    Controls the smoothness of faceting of a surface.

  • Filament Advect

    Evolves polygonal curves as vortex filaments.

  • File

    Reads, writes, or caches geometry on disk.

  • File Cache

    Writes and reads geometry sequences to disk.

  • File Merge

    Reads and collates data from disk.

  • Fillet

    Creates smooth bridging geometry between two curves or surfaces.

  • Filmbox FBX ROP output driver

  • Find Shortest Path

    Finds the shortest paths from start points to end points, following the edges of a surface.

  • Fit

    Fits a spline curve to points, or a spline surface to a mesh of points.

  • Fluid Compress

    Compresses the output of fluid simulations to decrease size on disk

  • Fluid Source

    Creates one or multiple volumes out of geometry to be used in a fluid simulation

  • Font

    Creates 3D text from Type 1, TrueType and OpenType fonts.

  • Force

    Uses a metaball to attract or repel points or springs.

  • Fractal

    Creates jagged mountain-like divisions of the input geometry.

  • Fur

    Создает множество кривых на поверхности, представляющих из себя волосы или шерсть.

  • Fuse

    Merges or splits (uniques) points.

  • Geometry ROP output driver

  • Glue Cluster

    Adds strength to a glue constraint network according to cluster values.

  • Grain Source

    Generates particles to be used as sources in a particle-based grain simulation.

  • Grid

    Creates planar geometry.

  • Groom Blend

    Объединяет направляющие и геометрии кожи двух груминг объектов.

  • Groom Fetch

    Получает данные груминга из объектов груминга.

  • Groom Pack

    Помещает компоненты груминга в упакованные примитивы, чтобы в последствии записать на диск.

  • Groom Switch

    Переключение всех компонентов между двумя потоками груминга.

  • Groom Unpack

    Распаковывает компоненты груминга из запакованного груминга.

  • Group

    Generates groups of points, primitives, edges, or vertices according to various criteria.

  • Group Combine

    Combines point groups, primitive groups, or edge groups according to boolean operations.

  • Group Copy

    Copies groups between two pieces of geometry, based on point/primitive numbers.

  • Group Delete

    Deletes groups of points, primitives, edges, or vertices according to patterns.

  • Group Expression

    Runs VEX expressions to modify group membership.

  • Group Paint

    Sets group membership interactively by painting.

  • Group Promote

    Converts point, primitive, edge, or vertex groups into point, primitive, edge, or vertex groups.

  • Group Range

    Groups points and primitives by ranges.

  • Group Rename

    Renames groups according to patterns.

  • Group Transfer

    Transfers groups between two pieces of geometry, based on proximity.

  • Guide Advect

    Перемещает точки направляющих в соответствии с объемом (полем) скоростей.

  • Guide Collide With VDB

    Решает коллизии направляющих кривых с VDB SDF (signed distance fields).

  • Guide Deform

    Деформирует геометрию в соответствии с анимированной поверхностью кожи или направляющими кривыми (при наличии).

  • Guide Groom

    Интуитивное управление направляющими кривыми во вьюпорте.

  • Guide Group

    Создает стандартные группы примитивов, используемые инструментами груминга.

  • Guide Initialize

    Позволяет быстро указать направляющим волос некоторое начальное направление.

  • Guide Mask

    Создает атрибуты масок для различных операций груминга.

  • Guide Partition

  • Guide Skin Attribute Lookup

    Считывает атрибуты геометрии кожи в корневой точке направляющих кривых.

  • Guide Tangent Space

    Построение пространства касательных вдоль кривой.

  • Guide Transfer

    Перенос направляющих волос между геометриями.

  • Hair Clump

    Собирает в пряди направляющие кривые.

  • Hair Generate

    Генерирует волосы на поверхности или из точек.

  • Hair Growth Field

    Создает поле скоростей, основанное на примитивах мазков.

  • HeightField

    Generates an initial heightfield volume for use with terrain tools.

  • HeightField Blur

    Blurs a terrain height field or mask.

  • HeightField Clip

    Limits height values to a certain minimum and/or maximum.

  • HeightField Copy Layer

    Creates a copy of a height field or mask.

  • HeightField Crop

    Extracts a square of a certain width/length from a larger height volume, or resizes/moves the boundaries of the height field.

  • HeightField Distort

    Advects the input volume through a noise pattern to break up hard edges and add variety.

  • HeightField Draw Mask

    Lets you draw shapes to create a mask for height field tools.

  • HeightField Erode

    Calculates thermal and hydraulic erosion over time (frames) to create more realistic terrain.

  • HeightField File

    Imports a 2D image map from a file or compositing node into a height field or mask.

  • HeightField Isolate Layer

    Copies another layer over the mask layer, and optionally flattens the height field.

  • HeightField Layer

    Composites together two height fields.

  • HeightField Layer Clear

    Sets all values in a heightfield layer to 0.

  • HeightField Layer Property

    Sets the border voxel policy on a height field volume.

  • HeightField Mask by Feature

    Creates a mask based on different features of the height layer.

  • HeightField Mask by Object

    Creates a mask based some other geometry.

  • HeightField Noise

    Adds vertical noise to a height field, creating peaks and valleys.

  • HeightField Output

    Exports height and/or mask layers to disk as an image.

  • HeightField Paint

    Lets you paint values into a height or mask field using strokes.

  • HeightField Patch

    Patches features from one heightfield to another.

  • HeightField Pattern

    Adds displacement in the form of a ramps, steps, stripes, Voronoi cells, or other patterns.

  • HeightField Project

    Projects 3D geometry into a height field.

  • HeightField Quick Shade

    Applies a material that lets you plug in textures for different layers.

  • HeightField Remap

    Remaps the values in a height field or mask layer.

  • HeightField Resample

    Changes the resolution of a height field.

  • HeightField Scatter

    Scatters points across the surface of a height field.

  • HeightField Slump

    Simulates loose material sliding down inclines and piling at the bottom.

  • HeightField Terrace

    Creates stepped plains from slopes in the terrain.

  • HeightField Tile Splice

    Stitches height field tiles back together.

  • HeightField Tile Split

    Splits a height field volume into rows and columns.

  • HeightField Transform

    Height field specific scales and offsets.

  • HeightField Visualize

    Visualizes elevations using a custom ramp material, and mask layers using tint colors.

  • Hole

    Makes holes in surfaces.

  • Inflate

    Deforms the points in the first input to make room for the inflation tool.

  • Instance

    Instances Geometry on Points.

  • Intersection Analysis

    Creates points with attributes at intersections between a triangle and/or curve mesh with itself, or with an optional second set of triangles and/or curves.

  • Intersection Stitch

    Composes triangle surfaces and curves together into a single connected mesh.

  • Invoke Compiled Block

    Processes its inputs using the operation of a referenced compiled block.

  • IsoOffset

    Builds an offset surface from geometry.

  • IsoSurface

    Generates an isometric surface from an implicit function.

  • Join

    The Join op connects a sequence of faces or surfaces into a single primitive that inherits their attributes.

  • Knife

    Divides, deletes, or groups geometry based on an interactively drawn line.

  • L-System

    Creates fractal geometry from the recursive application of simple rules.

  • Lattice

    Deforms geometry based on how you reshape control geometry.

  • Lidar Import

    Reads a lidar file and imports a point cloud from its data.

  • Line

    Creates polygon or NURBS lines from a position, direction, and distance.

  • MDD

    Animates points using an MDD file.

  • Magnet

    Deforms geometry by using another piece of geometry to attract or repel points.

  • Match Axis

    Aligns the input geometry to a specific axis.

  • Match Size

    Resizes and recenters the geometry according to reference geometry.

  • Match Topology

    Reorders the primitive and point numbers of the input geometry to match some reference geometry.

  • Material

    Assigns one or more materials to geometry.

  • Measure

    Measures volume, area, and perimeter of polygons and puts the results in attributes.

  • Merge

    Merges geometry from its inputs.

  • MetaGroups

    Defines groupings of metaballs so that separate groupings are treated as separate surfaces when merged.

  • Metaball

    Creates metaballs and meta-superquadric surfaces.

  • Mirror

    Duplicates and mirrors geometry across a mirror plane.

  • Mountain

    Displaces points along their normals based on fractal noise.

  • Mountain

    Displaces points along their normals based on fractal noise.

  • Muscle Capture

    Supports Muscle Deform by assigning capture weights to points based on distance away from given primitives

  • Muscle Deform

    Deforms a surface mesh representing skin to envelop or drape over geometry representing muscles

  • Name

    Creates a "naming" attribute on points or primitives allowing you to refer to them easily, similar to groups.

  • Normal

    Computes surface normal attribute.

  • Null

    Does nothing.

  • Object Merge

    Merges geometry from multiple sources and allows you to define the manner in which they are grouped together and transformed.

  • Object_musclerig@musclerigstrokebuilder

  • Object_riggedmuscle@musclestrokebuilder

    Assists the creation of a Muscle or Muscle Rig by allowing you to draw a stroke on a projection surface.

  • Ocean Evaluate

    Deforms input geometry based on ocean "spectrum" volumes.

  • Ocean Evaluate

    Deforms input geometry based on ocean "spectrum" volumes.

  • Ocean Foam

    Generates particle-based foam

  • Ocean Source

    Generates particles and volumes from ocean "spectrum" volumes for use in simulations

  • Ocean Source

    Generates particles and volumes from ocean "spectrum" volumes for use in simulations

  • Ocean Spectrum

    Generates volumes containing information for simulating ocean waves.

  • Ocean Waves

    Instances individual waveforms onto input points and generated points.

  • OpenCL

    Executes an OpenCL kernel on geometry.

  • Output

    Marks the output of a sub-network.

  • Pack

    Packs geometry into an embedded primitive.

  • Pack Points

    Packs points into a tiled grid of packed primitives.

  • Packed Disk Edit

    Editing Packed Disk Primitives.

  • Packed Edit

    Editing Packed Primitives.

  • Paint

    Lets you paint color or other attributes on geometry.

  • Paint Color Volume

    Creates a color volume based on drawn curve

  • Paint Fog Volume

    Creates a fog volume based on drawn curve

  • Paint SDF Volume

    Creates an SDF volume based on drawn curve

  • Particle

    Creates simple particle simulations without requiring an entire particle network.

  • Particle Fluid Surface

    Generates a surface around the particles from a particle fluid simulation.

  • Particle Fluid Tank

    Creates a set of regular points filling a tank.

  • Partition

    Places points and primitives into groups based on a user-supplied rule.

  • Peak

    Moves primitives, points, edges or breakpoints along their normals.

  • Platonic Solids

    Creates platonic solids of different types.

  • Point

    Manually adds or edits point attributes.

  • Point Cloud Iso

    Constructs an iso surface from its input points.

  • Point Deform

    Deforms geometry on an arbitrary connected point mesh.

  • Point Generate

    Creates new points, optionally based on point positions in the input geometry.

  • Point Jitter

    Jitters points in random directions.

  • Point Relax

    Moves points with overlapping radii away from each other, optionally on a surface.

  • Point Replicate

    Generates a cloud of points around the input points.

  • Points from Volume

    Creates set of regular points filling a volume.

  • Poly Bridge

    Creates flat or tube-shaped polygon surfaces between source and destination edge loops, with controls for the shape of the bridge.

  • Poly Expand 2D

    Creates offset polygonal geometry for planar polygonal graphs.

  • Poly Extrude

    Extrudes polygonal faces and edges.

  • PolyBevel

    Creates straight, rounded, or custom fillets along edges and corners.

  • PolyBevel

    Bevels points and edges.

  • PolyCut

    Breaks curves where an attribute crosses a threshold.

  • PolyDoctor

    Helps repair invalid polygonal geometry, such as for cloth simulation.

  • PolyExtrude

    Extrudes polygonal faces and edges.

  • PolyFill

    Fills holes with polygonal patches.

  • PolyFrame

    Creates coordinate frame attributes for points and vertices.

  • PolyLoft

    Creates new polygons using existing points.

  • PolyPatch

    Creates a smooth polygonal patch from primitives.

  • PolyPath

    Cleans up topology of polygon curves.

  • PolyReduce

    Reduces the number of polygons in a model while retaining its shape. This node preserves features, attributes, textures, and quads during reduction.

  • PolySoup

    Combines polygons into a single primitive that can be more efficient for many polygons

  • PolySpline

    The PolySpline SOP fits a spline curve to a polygon or hull and outputs a polygonal approximation of that spline.

  • PolySplit

    Divides an existing polygon into multiple new polygons.

  • PolySplit

    Divides an existing polygon into multiple new polygons.

  • PolyStitch

    Stitches polygonal surfaces together, attempting to remove cracks.

  • PolyWire

    Constructs polygonal tubes around polylines, creating renderable geometry with smooth bends and intersections.

  • Pose Scope

    Assigns channel paths and/or pickscripts to geometry.

  • Primitive

    Edits primitive, primitive attributes, and profile curves.

  • Primitive Split

    Takes a primitive attribute and splits any points whose primitives differ by more than a specified tolerance at that attribute.

  • Profile

    Extracts or manipulates profile curves.

  • Project

    Creates profile curves on surfaces.

  • Python

    Runs a Python snippet to modify the incoming geometry.

  • RMan Shader

    Attaches RenderMan shaders to groups of faces.

  • Rails

    Generates surfaces by stretching cross-sections between two guide rails.

  • Ray

    Projects one surface onto another.

  • Refine

    Increases the number of points/CVs in a curve or surface without changing its shape.

  • Reguide

    Разбрасывает новые направляющие, интерполируя значения существующих направляющих.

  • Remesh

    Recreates the shape of the input surface using "high-quality" (nearly equilateral) triangles.

  • Repack

    Repacks geometry as an embedded primitive.

  • Resample

    Resamples one or more curves or surfaces into even length segments.

  • Rest Position

    Sets the alignment of solid textures to the geometry so the texture stays put on the surface as it deforms.

  • Reverse

    Reverses or cycles the vertex order of faces.

  • Revolve

    Revolves a curve around a center axis to sweep out a surface.

  • Rewire Vertices

    Rewires vertices to different points specified by an attribute.

  • Ripple

    Generates ripples by displacing points along the up direction specified.

  • Scatter

    Scatters new points randomly across a surface or through a volume.

  • Script

    Runs scripts when cooked.

  • Sculpt

    Lets you interactively reshape a surface by brushing.

  • Sequence Blend

    Morphs though a sequence of 3D shapes, interpolating geometry and attributes.

  • Sequence Blend

    Sequence Blend lets you do 3D Metamorphosis between shapes and Interpolate point position, colors…

  • Shrinkwrap

    Computes the convex hull of the input geometry and moves its polygons inwards along their normals.

  • Shrinkwrap

    Takes the convex hull of input geometry and moves its polygons inwards along their normals.

  • Skin

    Builds a skin surface between any number of shape curves.

  • Sky

    Creates a sky filled with volumentric clouds

  • Smooth

    Smooths out (or "relaxes") polygons, meshes and curves without increasing the number of points.

  • Smooth

    Smooths out (or "relaxes") polygons, meshes and curves without increasing the number of points.

  • Soft Peak

    Moves the selected point along its normal, with smooth rolloff to surrounding points.

  • Soft Transform

    Moves the selected point, with smooth rolloff to surrounding points.

  • Solid Conform

    Creates a tetrahedral mesh that conforms to a connected mesh as much as possible.

  • Solid Embed

    Creates a simple tetrahedral mesh that covers a connected mesh.

  • Solid Fracture

    Creates a partition of a tetrahedral mesh that can be used for finite-element fracturing.

  • Solver

    Allows running a SOP network iteratively over some input geometry, with the output of the network from the previous frame serving as the input for the network at the current frame.

  • Sort

    Reorders points and primitives in different ways.

  • Sphere

    Creates a sphere or ovoid surface.

  • Split

    Splits primitives or points into two streams.

  • Spray Paint

    Spray paints random points onto a surface.

  • Spring

    Simulates the behavior of points as if the edges connecting them were springs.

  • Sprite

    A SOP node that sets the sprite display for points.

  • Starburst

    Insets points on polygonal faces.

  • Stash

    Caches the input geometry in the node on command, and then uses it as the node’s output.

  • Stitch

    Stretches two curves or surfaces to cover a smooth area.

  • Stroke

    Low level tool for building interactive assets.

  • Stroke Cache

    Simplifies the building of tools that incrementally modify geometry based on strokes.

  • Subdivide

    Subdivides polygons into smoother, higher-resolution polygons.

  • Subnetwork

    The Subnet op is essentially a way of creating a macro to represent a collection of ops as a single op in the Network Editor.

  • Super Quad

    Generates an isoquadric surface.

  • Surfsect

    Trims or creates profile curves along the intersection lines between NURBS or bezier surfaces.

  • Sweep

    Creates a surface by sweeping cross-sections along a backbone curve.

  • Switch

    Switches between network branches based on an expression or keyframe animation.

  • Table Import

    Reads a CSV file creating point per row.

  • Test Geometry: Pig Head

    Creates a pig head, which can be used as test geometry..

  • Test Geometry: Rubber Toy

    Creates a rubber toy, which can be used as test geometry.

  • Test Geometry: Shader Ball

    Creates a shader ball, which can be used to test shaders.

  • Test Geometry: Squab

    Creates a squab, which can be used as test geometry.

  • Test Geometry: Tommy

    Creates a soldier, which can be used as test geometry.

  • Test Simulation: Crowd Transition

    Provides a simple crowd simulation for testing transitions between animation clips.

  • Test Simulation: Ragdoll

    Provides a simple Bullet simulation for testing the behavior of a ragdoll.

  • Tet Partition

    Partitions a given tetrahedron mesh into groups of tets isolated by a given polygon mesh

  • Tetrahedralize

    Performs variations of a Delaunay Tetrahedralization.

  • Time Warp

    Retimes the input to a different time range.

  • TimeBlend

    Blends intraframe values for geometry.

  • TimeShift

    Cooks the input at a different time.

  • Toon Shader Attributes

    Sets attributes used by the Toon Color Shader and Toon Outline Shader.

  • TopoBuild

    Lets you interactively draw a reduced quad mesh automatically snapped to existing geometry.

  • Torus

    Creates a torus (doughnut) shaped surface.

  • Trace

    Traces curves from an image file.

  • Trail

    Creates trails behind points.

  • Transform

    The Transform operation transforms the source geometry in "object space" using a transformation matrix.

  • Transform Axis

    Transforms the input geometry relative to a specific axis.

  • Transform By Attribute

    Transforms the input geometry by a point attribute.

  • Transform Pieces

    Transforms input geometry according to transformation attributes on template geometry.

  • Tri Bezier

    Creates a triangular Bezier surface.

  • TriDivide

    Refines triangular meshes using various metrics.

  • Triangulate 2D

    Connects points to form well-shaped triangles.

  • Trim

    Trims away parts of a spline surface defined by a profile curve or untrims previous trims.

  • Tube

    Creates open or closed tubes, cones, or pyramids.

  • Twist

    Applies deformations such as bend, linear taper, shear, squash/stretch, taper, and twist.

  • UV Brush

    Adjusts texture coordinates in the UV viewport by painting.

  • UV Edit

    Lets you interactively move UVs in the texture view.

  • UV Flatten

    Creates flattened pieces in texture space from 3D geometry.

  • UV Flatten

    Creates flattened pieces in texture space from 3D geometry.

  • UV Fuse

    Merges UVs.

  • UV Layout

    Tries to pack UV islands efficiently into a limited area.

  • UV Pelt

    Relaxes UVs by pulling them out toward the edges of the texture area.

  • UV Project

    Assigns UVs by projecting them onto the surface from a set direction.

  • UV Quick Shade

    Applies an image file as a textured shader to a surface.

  • UV Texture

    Assigns texture UV coordinates to geometry for use in texture and bump mapping.

  • UV Transform

    Transforms UV texture coordinates on the source geometry.

  • UV Transform

    Transforms UV texture coordinates on the source geometry.

  • UV Unwrap

    Separates UVs into reasonably flat, non-overlapping groups.

  • Unix

    Processes geometry using an external program.

  • Unpack

    Unpacks packed primitives.

  • Unpack Points

    Unpacks points from packed primitives.

  • VDB

    Creates one or more empty/uniform VDB volume primitives.

  • VDB Activate

    Activates voxel regions of a VDB for further processing.

  • VDB Activate SDF

    Expand or contract signed distance fields stored on VDB volume primitives.

  • VDB Advect Points

    Moves points in the input geometry along a VDB velocity field.

  • VDB Advect SDF

    Moves SDF VDBs in the input geometry along a VDB velocity field.

  • VDB Analysis

    Computes an analytic property of a VDB volumes, such as gradient or curvature.

  • VDB Clip

    Clips VDB volume primitives using a bounding box or another VDB as a mask.

  • VDB Combine

    Combines the values of two aligned VDB volumes in various ways.

  • VDB Diagnostics

    Tests VDBs for Bad Values and Repairs.

  • VDB Fracture

    Cuts level set VDB volume primitives into multiple pieces.

  • VDB LOD

    Build an LOD Pyramid from a VDB.

  • VDB Morph SDF

    Blends between source and target SDF VDBs.

  • VDB Occlusion Mask

    Create a mask of the voxels in shadow from a camera for VDB primitives.

  • VDB Points Group

    Manipulates the Internal Groups of a VDB Points Primitive.

  • VDB Project Non-Divergent

    Removes divergence from a Vector VDB.

  • VDB Renormalize SDF

    Fixes signed distance fields stored in VDB volume primitives.

  • VDB Resample

    Re-samples a VDB volume primitive into a new orientation and/or voxel size.

  • VDB Reshape SDF

    Reshapes signed distance fields in VDB volume primitives.

  • VDB Segment by Connectivity

    Splits SDF VDBs into connected components.

  • VDB Smooth

    Smooths out the values in a VDB volume primitive.

  • VDB Smooth SDF

    Smooths out SDF values in a VDB volume primitive.

  • VDB Topology to SDF

    Creates an SDF VDB based on the active set of another VDB.

  • VDB Vector Merge

    Merges three scalar VDB into one vector VDB.

  • VDB Vector Split

    Splits a vector VDB primitive into three scalar VDB primitives.

  • VDB Visualize Tree

    Replaces a VDB volume with geometry that visualizes its structure.

  • VDB from Particle Fluid

    Generates a signed distance field (SDF) VDB volume representing the surface of a set of particles from a particle fluid simulation.

  • VDB from Particles

    Converts point clouds and/or point attributes into VDB volume primitives.

  • VDB from Polygons

    Converts polygonal surfaces and/or surface attributes into VDB volume primitives.

  • VDB to Spheres

    Fills a VDB volume with adaptively-sized spheres.

  • VEX SOP

    References a VEX program that can manipulate point attributes.

  • Verify BSDF

    Verify that a bsdf conforms to the required interface.

  • Vertex

    Manually adds or edits attributes on vertices (rather than on points).

  • Vertex Split

    Takes a vertex attribute and splits any point whose vertices differ by more than a specified tolerance at that attribute.

  • Visibility

    Shows/hides primitives in the 3D viewer and UV editor.

  • Visualize

    Lets you attach visualizations to different nodes in a geometry network.

  • Volume

    Creates a volume primitive.

  • Volume Analysis

    Computes analytic properties of volumes.

  • Volume Arrival Time

    Computes a speed-defined travel time from source points to voxels.

  • Volume Blur

    Blurs the voxels of a volume.

  • Volume Bound

    Bounds voxel data.

  • Volume Break

    Cuts polygonal objects using a signed distance field volume.

  • Volume Compress

    Re-compresses Volume Primitives.

  • Volume Convolve 3×3×3

    Convolves a volume by a 3×3×3 kernel.

  • Volume FFT

    Compute the Fast Fourier Transform of volumes.

  • Volume Feather

    Feathers the edges of volumes.

  • Volume Merge

    Flattens many volumes into one volume.

  • Volume Mix

    Combines the scalar fields of volume primitives.

  • Volume Optical Flow

    Translates the motion between two "image" volumes into displacement vectors.

  • Volume Patch

    Fill in a region of a volume with features from another volume.

  • Volume Ramp

    Remaps a volume according to a ramp.

  • Volume Rasterize

    Rasterizes into a volume.

  • Volume Rasterize Curve

    Converts a curve into a volume.

  • Volume Rasterize Hair

    Converts fur or hair to a volume for rendering.

  • Volume Rasterize Particles

    Converts a point cloud into a volume.

  • Volume Rasterize Points

    Converts a point cloud into a volume.

  • Volume Reduce

    Reduces the values of a volume into a single number.

  • Volume Resample

    Resamples the voxels of a volume to a new resolution.

  • Volume Resize

    Resizes the bounds of a volume without changing voxels.

  • Volume SDF

    Builds a Signed Distance Field from an isocontour of a volume.

  • Volume Slice

    Extracts 2d slices from volumes.

  • Volume Splice

    Splices overlapping volume primitives together.

  • Volume Stamp

    Stamps volumes instanced on points into a single target volume.

  • Volume Surface

    Adaptively surfaces a volume hierarchy with a regular triangle mesh.

  • Volume Trail

    Computes a trail of points through a velocity volume.

  • Volume VOP

    Runs CVEX on a set of volume primitives.

  • Volume Velocity

    Computes a velocity volume.

  • Volume Velocity from Curves

    Generates a volume velocity field using curve tangents.

  • Volume Velocity from Surface

    Generates a velocity field within a surface geometry.

  • Volume Visualization

    Adjusts attributes for multi-volume visualization.

  • Volume Wrangle

    Runs a VEX snippet to modify voxel values in a volume.

  • Volume from Attribute

    Sets the voxels of a volume from point attributes.

  • Voronoi Fracture

    Fractures the input geometry by performing a Voronoi decomposition of space around the input cell points

  • Voronoi Fracture Points

    Given an object and points of impact on the object, this SOP generates a set of points that can be used as input to the Voronoi Fracture SOP to simulate fracturing the object from those impacts.

  • Voronoi Split

    Cuts the geometry into small pieces according to a set of cuts defined by polylines.

  • Vortex Force Attributes

    Creates the point attributes needed to create a Vortex Force DOP.

  • Whitewater Source

    Generates emission particles and volumes to be used as sources in a Whitewater simulation.

  • Wire Blend

    Morphs between curve shapes while maintaining curve length.

  • Wire Capture

    Captures surfaces to a wire, allowing you to edit the wire to deform the surface.

  • Wire Deform

    Deforms geometry captured to a curve via the Wire Capture node.

  • Wire Transfer Shape

    Transfers the shape of one curve to another.

  • Wireframe

    Constructs polygonal tubes around polylines, creating renderable geometry.